Announcement

Collapse
No announcement yet.

NMR structures of fusion peptide from influenza hemagglutinin H3 subtype and its mutants

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • NMR structures of fusion peptide from influenza hemagglutinin H3 subtype and its mutants

    J Pept Sci. 2014 Feb 12. doi: 10.1002/psc.2616. [Epub ahead of print]
    NMR structures of fusion peptide from influenza hemagglutinin H3 subtype and its mutants.
    Du T1, Jiang L, Liu M.
    Author information
    Abstract

    The influenza fusion peptide located at the N-terminus of the hemagglutinin HA2 subunit initiates the fusing process of the viral membrane with the host cell endosomal membrane. It had been reported that the structure of a 20-residue H3 subtype fusion peptide (H3-HAfp20) was significantly different with that of a H1 subtype 23-residue one (H1-HAfp23). The sequential difference between the 12th and 15th residues of H1 and H3 subtypes could not fully explain the conformational variation. The first and last three amino acids of H3-HAfp23 involved in formation of hydrogen bonds may play an important role in fusion process. To confirm this hypothesis, we investigate the structures of H3-HAfp23 peptide and its mutants, G1S and G1V, in dodecylphosphatidyl choline micelles by using heteronuclear NMR technology. The results demonstrate that, similar to H1-HAfp23 but significantly different with H3-HAfp20, H3-HAfp23 also has tight helical hairpin structure with the N- and C-terminuses linked together because of the hydrogen bonds between Gly1 and the last three amino acids, Trp21 -Tyr22 -Gly23 . Although the 'hemifusion' G1S and lethal G1V mutants have hairpin-like helical structures, the distances between the N- and C-terminuses are increased as shortage of the hydrogen bonds and the larger kink angle between the antiparallel helices. The paramagnetic ion titration experiments show that the terminuses are inserted into the dodecylphosphatidyl choline micelles used as solving media. These may imply that the tight helical hairpin structure, especially the closed conformation at terminus, plays an important role in fusion activity. Copyright ? 2014 European Peptide Society and John Wiley & Sons, Ltd.

    Copyright ? 2014 European Peptide Society and John Wiley & Sons, Ltd.
    KEYWORDS:

    NMR, influenza fusion peptide, mutation, structure

    PMID:
    24677267
    [PubMed - as supplied by publisher]

    The influenza fusion peptide located at the N-terminus of the hemagglutinin HA2 subunit initiates the fusing process of the viral membrane with the host cell endosomal membrane. It had been reported that the structure of a 20-residue H3 subtype fusion peptide (H3-HAfp20) was significantly different …
Working...
X