FluTrackers

Tracking Infectious Diseases since 2006

PayPal Verified medpedia.com

FluTrackers.com Inc. is a 501(c)(3) charity

Nederlandse taal Foro de Español de FluTrackers Francophones des FluTrackers Forum Italiano FluTrackers Latest Posts

www www.flutrackers.com



Go Back   FluTrackers > Grippe H1N1 et grippe saisonnière > Articles scientifiques

Reply
 
Thread Tools Search this Thread Display Modes
  #1  
Old July 11th, 2009, 09:30 AM
Françoise Ramona's Avatar
Françoise Ramona Françoise Ramona is offline
Éditeur, Senior Moderator
 
Join Date: May 2006
Posts: 8,651
Default L'obésité peut être facteur de risque pour la maladie H1N1 grave

L'obésité peut être facteur de risque pour la maladie H1N1 grave

Traduction machine

Rédacteur de nouvelles de Robert Roos

Le 10 juillet 2009 (nouvelles de CIDRAP) - dans une série de 10 cas de maladie grave avec le virus de la pandémie H1N1 au Michigan, neuf patients étaient obèses, proposant que les personnes très de poids excessif puissent être particulièrement vulnérables aux infections H1N1 représentant un danger pour la vie, le centres pour le contrôle et la prévention des maladies (CDC) rapporté aujourd'hui.
Sept des neuf patients obèses ont été considérés extrêmement obèses, et trois des neuf patients sont morts, selon le rapport, édité comme expédition de MMWR.
Les « cliniciens devraient se rendre compte du potentiel pour des complications graves de l'infection originale de virus de la grippe (H1N1), en particulier dans les patients extrêmement obèses, » le rapport de CDC indique.
Le rapport n'est pas la première fois que l'obésité a été citée en tant que conclusion inopinément commune dans les patients présentant la maladie H1N1 grave, mais les bonnes données sur la matière sont rares, ont indiqué Dr. Anthony Fiore, un épidémiologue médical dans la Division de grippe de CDC et un co-auteur du rapport.
« On l'a noté dans certaines des données qui sont reçues par l'OMS [l'organisation mondiale de la santé], » Fiore a dit des nouvelles de CIDRAP. « C'a été un phénomène que d'autres personnes ont noté, mais je ne pense pas dans une sorte quantitative de manière. »
Profil de série
Les 10 patients décrits dans le rapport ont été mentionnés l'unité chirurgicale de soins intensifs (SICU) au système de santé d'Université du Michigan entre les 26 mai et 18 juin. L'unité se spécialise en soignant des patients avec le syndrome de détresse respiratoire aigu (ARD).
Les patients se sont étendus de 21 à 53 années, avec un âge médian de 46, et tout sauf un étaient des hommes. Neuf ont été classifiés comme obèses sur la base d'un index de masse de corps plus de 30, et sept d'entre eux ont eu un index de 40 ou plus de, classifié comme extrêmement obèse. Deux des patients-un obèses de eux un asthme fumeur-eu, et un tiers ont eu l'affection pulmonaire chronique.
Chacun des 10 patients a eu besoin de la ventilation mécanique avancée, et deux ont été traités avec l'oxygénation extracorporeal de membrane (ECMO). Six d'entre eux ont également eu besoin du traitement pour l'échec rénal aigu. Neuf ont eu le syndrome multiorgan de dysfonctionnement une fois admis au SICU, et neuf soufferts du choc septique. Cinq patients se sont avérés pour avoir les emboles pulmonaires à l'heure d'admission ou de plus tard.
Tous les patients ont reçu le traitement antiviral, mais les auteurs ont estimé que c'a été commencé une médiane de 8 jours après début-bien de symptôme au delà de la fenêtre de deux jours recommandée pour la plus grande efficacité.
Au 8 juillet, deux patients recevaient toujours ECMO ou ventilation mécanique, cinq avaient été transférés de nouveau aux hôpitaux de référence en état stable, et trois étaient morts, le rapport indique.
Aucune évidence de l'infection bactérienne n'a été trouvée dans les patients l'uns des, tous de qui a reçu le traitement antibiotique avant et après qu'elles aient été admises au SICU. Mais les auteurs disent qu'ils ne pourraient pas exclure la possibilité d'infection bactérienne non détectée
Le rapport indique que les résultats globaux suggèrent que les dommages de poumon des patients aient été provoqués par la pneumonie virale primaire, mais leurs propres immuno-réactions intenses pourraient avoir contribué aussi bien.
Prédominance d'obésité appelée frappe
« La forte présence de la série d'obésité dans ce cas-ci frappe, » les états de rapport.
Elle indique qu'elle est inconnue si l'obésité est un facteur de risque indépendant pour des complications graves de l'infection H1N1. L'obésité n'a pas été étiquetée comme facteur de risque pour la grippe saisonnière grave. Cependant, une étude a prouvé que les souris avec l'obésité suivre un régime-induite étaient pour mourir des infections saisonnières de grippe que les souris maigres étaient, les états de rapport.
En outre, elle note que les patients extrêmement obèses de grippe, comparés aux patients normaux de poids, ont une plus forte présence d'autres états de santé qui augmentent le risque de complications de grippe, y compris le coeur, le poumon, le foie, et les maladies métaboliques.
« Ce pourrait réellement être une issue que ce [obésité] est un marqueur d'autres maladies chroniques étant à la base, » plutôt qu'un facteur de risque indépendant pour les complications H1N1, a indiqué Fiore.
Il a dit qu'il est possible que l'obésité confère également un risque pour des complications graves dans la grippe saisonnière, mais elle juste n'a pas été identifiée avant.
Fiore a indiqué que la CDC étudie l'issue plus loin. « Nous allons certainement regarder l'information dans nos données de hosptalization d'une perspective nationale. Elle est provocante parce que ce n'est pas la sorte habituelle de facteur de risque médical que les gens cochent. Elle n'apparaît pas dans les codes habituels comme l'asthme ou l'arrêt du coeur congestif. »
« Il y a une grande prédominance de l'obésité dans le pays en ce moment, et de l'obésité grave, ainsi nous nous attendrions à ce que quelques patients de grippe aient ces conditions, mais nous n'avons pas une figure nationale, » il avons commenté. Sur la base des enquêtes de téléphone, la CDC a rapporté cette semaine que 26.1% d'Américains étaient obèses en 2008, à partir de 25.6% de 2007.
Les fonctionnaires de CDC ont précédemment mentionné l'obésité en tant que conclusion dans quelques patients présentant les infections H1N1 graves. Dans une conférence de presse du 19 mai, Dr. Anne Schuchat a commenté, « nous ont été étonnés par la fréquence de l'obésité parmi les cas graves ces nous le ′ VE dépistant. Je pense que c' est un résultat important. La question de si les gens avec l'obésité doivent être traités différemment en termes de traitement antiviral ou vaccinations saisonnières de grippe est une nous ′ au sujet du regard dans. »
Le rapport d'aujourd'hui note que les 10 patients ont reçu le traitement d'oseltamivir dans des doses plus élevées et sur une plus longue période que la normale. Il indique que jusqu'à ce que plus soit connu, des régimes accrus d'oseltamivir peuvent être considérés pour les patients sévèrement malades H1N1.
CDC. patients d'Intensif-soin avec le virus original grave infection-Michigan, juin 2009 de la grippe A (H1N1). Expédition de MMWR le 10 juillet 2009 ; 58 : 1-4 [texte intégral]
Voyez également :
Transcription de conférence de presse de CDC du 19 mai






Intensive-Care Patients With Severe Novel Influenza A (H1N1) Virus Infection --- Michigan, June 2009

In April 2009, CDC reported the first two cases in the United States of human infection with a novel influenza A (H1N1) virus (1). As of July 6, a total of 122 countries had reported 94,512 cases of novel influenza A (H1N1) virus infection, 429 of which were fatal; in the United States, a total of 33,902 cases were reported, 170 of which were fatal.* Cases of novel influenza A (H1N1) virus infection have included rapidly progressive lower respiratory tract disease resulting in respiratory failure, development of acute respiratory distress syndrome (ARDS), and prolonged intensive care unit (ICU) admission (2). Since April 26, communitywide transmission of novel influenza A (H1N1) virus has occurred in Michigan, with 655 probable and confirmed cases reported as of June 18 (Michigan Department of Community Health [MDCH], unpublished data, 2009). This report summarizes the clinical characteristics of a series of 10 patients with novel influenza A (H1N1) virus infection and ARDS at a tertiary-care ICU in Michigan. Of the 10 patients, nine were obese (body mass index [BMI] ≥30), including seven who were extremely obese (BMI ≥40); five had pulmonary emboli; and nine had multiorgan dysfunction syndrome (MODS). Three patients died. Clinicians should be aware of the potential for severe complications of novel influenza A (H1N1) virus infection, particularly in extremely obese patients.
The surgical intensive care unit (SICU) at the University of Michigan Health System (UMHS) specializes in the evaluation of adult patients with severe ARDS for advanced mechanical ventilation and possible extracorporeal membrane oxygenation (ECMO). During May 26--June 18, the unit received 13 patients for evaluation from outlying hospitals, 10 of whom were confirmed to have novel influenza A (H1N1) virus infection by testing of respiratory specimens with real-time reverse transcription--polymerase chain reaction (rRT-PCR) at MDCH and CDC. Direct immunofluorescent antibody staining at UMHS was negative for influenza A in all 10 patients. Viral culture at UMHS was positive for influenza A in two patients. All 10 patients were referred to the SICU because of severe hypoxemia, ARDS, and an inability to achieve adequate oxygenation with conventional ventilation modalities. Medical records of all 10 patients were reviewed for demographics, case characteristics, clinical findings, and clinical course.
Illness onset of the 10 patients occurred during May 22--June 13. The median age was 46 years (range: 21--53 years); nine patients were obese, including seven who were extremely obese (Table). In the three fatal cases, the time from illness onset to death ranged from 17 to 30 days. Four patients received steroids during their illness before transfer to the SICU; two with asthma received oral steroids as outpatients during the initial evaluation and treatment of their acute respiratory illness (one was on chronic oral steroids for underlying lung disease, and one without chronic pulmonary disease was prescribed oral steroids and oral antimicrobials). Five patients received intravenous corticosteroids during their SICU hospitalization: four for treatment of severe vasopressor-dependent refractory septic shock, and one for continuation of therapy for chronic pulmonary disease.
All 10 patients required initial advanced mechanical ventilation (high-frequency oscillatory or bilevel ventilation with high mean airway pressures [32--55 cm H20]). Two patients required veno-venous ECMO support. Six required continuous renal replacement therapy (CRRT) for acute renal failure. Upon transfer to the SICU, five had elevated white blood cell counts, and one had a decreased white blood cell count. The median white blood cell count (WBC) was 9,500 cells/mm3 (range: 3,700--19,700 cells/mm3; normal: 4,000--10,000 cells/mm3). All ten patients had elevated aspartate transaminase (AST) levels. The median AST level was 83.5 IU/L (range: 41--109 IU/L; normal: 8--30 IU/L). Six of the nine patients who were tested had elevated creatine phosphokinase (CPK) levels. The median CPK level was 999 IU/L (range: 51-- 6,572 IU/L; normal: 38--240 IU/L). Nine patients were admitted to the SICU with MODS, and nine manifested septic shock requiring vasopressor support. All 10 patients required tracheostomy.
Chest radiograph findings in all 10 patients were abnormal, with bilateral infiltrates consistent with severe multilobar pneumonia or ARDS. Computed tomography (CT) of the chest confirmed pulmonary emboli in four patients at admission to the SICU and in one additional patient who deteriorated 6 days after admission to the SICU. A hypercoagulable state was evident in two additional patients. One of these patients had frequent clotting of the CRRT circuit despite regional citrate anticoagulation. Another patient had bilateral iliofemoral deep venous thromboses, necessitating systemic heparin anticoagulation. None of the 10 patients had evidence of concomitant disseminated intravascular coagulation by laboratory studies.
As of July 8, none of the 10 patients had evidence of bacterial infection after admission to the SICU or in subsequent blood, bronchoalveolar lavage, or urine cultures. All patients received antibiotic therapy upon admission to the initial hospitals, and broad spectrum antibiotics were continued upon transfer to the SICU.
The timing of antiviral treatment initiation was difficult to determine because patients were transferred from other hospitals; however, the estimated median number of days from illness onset to initiation of antiviral treatment was 8 days (range: 5--12 days). During their care at the SICU, all 10 patients were administered oseltamivir and amantadine beyond the standard 5-day course, including higher-dose oseltamivir (up to 150 mg orally twice a day), with dose adjustment for decreased renal function.
As of July 8, one patient remained in the SICU requiring ECMO, one remained on advanced mechanical ventilation, five were transferred back to the referring facility in stable condition, and three had died. Autopsies were performed on two patients; results in both patients confirmed bilateral severe hemorrhagic viral pneumonitis with interstitial inflammation and diffuse alveolar damage and concurrent bilateral pulmonary emboli.
Reported by: LM Napolitano, MD, PK Park, MD, KC Sihler, MD, T Papadimos, MD, Div of Acute Care Surgery, Univ of Michigan Health System; C Chenoweth, MD, S Cinti, MD, C Zalewski, MPH, Div of Infectious Diseases and Infection Control, Univ of Michigan Health System; R Sharangpani, MD, Univ of Michigan School of Public Health; P Somsel, DrPH, E Wells, MD, Michigan Dept of Community Health. AM Fry, MD, AE Fiore, MD, MPH, JM Villanueva, PhD, S Lindstrom, PhD, TM Uyeki, MD, Influenza Div, National Center for Immunization and Respiratory Diseases, CDC.
Editorial Note:

This report describes the clinical findings of a limited series of patients with novel influenza A (H1N1) virus infection and refractory ARDS admitted to a tertiary-care ICU for advanced mechanical ventilation. This patient group represents the most severely ill subset of persons with novel influenza A (H1N1) virus infection and is notable for the predominance of males, the high prevalence of obesity (especially extreme obesity), and the frequency of clinically significant pulmonary emboli and MODS. All required advanced mechanical ventilator support, reflecting severe pulmonary damage. The pulmonary compromise described in this report suggests that severe pulmonary damage occurred as a result of primary viral pneumonia. Although data are not available, this damage also might be attributable to secondary host immune responses (e.g., through cytokine dysregulation triggered by high viral replication). However, bacterial coinfection in the lung not identified by blood culture or bronchoalveolar lavage cannot be excluded.
Only three of the patients in this series had underlying conditions associated with a higher risk for seasonal influenza complications. Conditions associated with an increased risk for complications from seasonal influenza include extremes of age, pregnancy, chronic underlying medical conditions (e.g., pulmonary, cardiovascular, hepatic, hematologic, neurologic, and neuromuscular conditions and metabolic disorders or immunosuppression), long-term aspirin therapy in persons aged ≤18 years, and being a resident of a nursing home or other chronic-care facility (3). However, fatal disease associated with novel influenza A (H1N1) virus infection has occurred among persons without these conditions who previously were healthy (2).
The high prevalence of obesity in this case series is striking. Whether obesity is an independent risk factor for severe complications of novel influenza A (H1N1) virus infection is unknown. Obesity has not been identified previously as a risk factor for severe complications of seasonal influenza. In a mouse model, diet-induced obese mice had significantly higher mortality when infected with seasonal influenza virus compared with their leaner counterparts (4). In addition, extremely obese patients have a higher prevalence of comorbid conditions that confer higher risk for influenza complications, including chronic heart, lung, liver, and metabolic diseases.
One study of patients admitted to critical-care units indicated that obesity was an independent risk factor for mortality (5). A meta-analysis concluded that prolonged duration of mechanical ventilation and longer SICU length of stay, but not mortality, are associated with obesity (6). Another study reported that extremely obese ICU patients had higher rates of mortality, nursing home admission, and ICU complications compared with moderately obese patients (BMI 30--39) (7). Further investigations of the role of extreme obesity and accompanying comorbidities in severely ill patients with novel influenza A (H1N1) virus infection are needed.
Pulmonary emboli are not known to be a common complication of ARDS or of sepsis syndrome, but both ARDS and sepsis represent hypercoagulable states (8). Pulmonary emboli were not noted in patients hospitalized with novel influenza A (H1N1) virus infection in Mexico (3). One clinical study did not identify any increased risk for pulmonary embolism with seasonal influenza virus infection (9). However, a report of two patients with rapidly progressive hypoxemia associated with influenza A (H3N2) virus infection noted that they received a diagnosis of acute pulmonary embolism (10). Clinicians providing care to patients with novel influenza A (H1N1) virus infection should be aware of the potential for patients with ARDS to develop a hypercoagulable state and for pulmonary emboli to cause severe complications, including fatal outcomes.
Two observational studies have demonstrated a reduction in mortality with oseltamivir treatment among hospitalized patients with seasonal influenza compared with untreated patients (11,12). Although early antiviral treatment (<48 hours from illness onset) is optimal to reduce illness among outpatients with seasonal influenza (13), a reduction in mortality of hospitalized persons with seasonal influenza or avian influenza A (H5N1) virus infection was reported even when oseltamivir treatment was initiated later (11,14). Early antiviral treatment of hospitalized patients with suspected influenza is recommended, including for patients admitted ≥48 hours after illness onset (13).
The patients in this series received higher oseltamivir dosing and longer duration of treatment than standard therapy. Data to inform clinical guidance are needed on viral shedding, pharmacokinetics, and clinical effectiveness of standard versus higher-dose oseltamivir treatment and on optimal duration of therapy for patients, including obese persons, with severe or progressive novel influenza A (H1N1) virus infection. Limited data for seasonal influenza treatment suggest that doubling the oseltamivir dose is well-tolerated with a comparable adverse event profile as the standard adult dose (75 mg orally twice a day) (15). Higher oseltamivir dosing and longer duration of treatment has been suggested for H5N1 (avian influenza) patients with severe pulmonary disease (14). Until additional data are available, higher oseltamivir dosage (e.g., 150 mg orally twice a day for adults) or extending the duration of treatment can be considered for severely ill hospitalized patients with novel influenza A (H1N1) virus infection.
Further characterization of severe cases of novel influenza A (H1N1) virus infection in the United States and worldwide is needed to determine the frequency of the findings from this limited case-series. Clinicians caring for patients with suspected novel influenza A (H1N1) virus infection should monitor them closely for rapid clinical deterioration, especially with regard to increasing oxygenation requirements and potential for development of complications (e.g., respiratory failure, ARDS, multiorgan failure, septic shock, and pulmonary emboli). Empiric antiviral treatment is recommended for all hospitalized patients at admission with suspected novel influenza A (H1N1) virus infection, † including persons who have received a diagnosis of community-acquired pneumonia. Empiric antibiotic agents also should be used as appropriate for suspected bacterial infection. Depending on the antiviral susceptibilities of circulating influenza A virus strains, either zanamivir monotherapy or combination therapy with oseltamivir (for treatment of novel influenza A [H1N1] virus infection) and rimantadine (for treatment of oseltamivir-resistant seasonal influenza A [H1N1]) might be indicated in hospitalized patients until final virus identification is available. In communities in which novel influenza A (H1N1) virus is the predominant circulating influenza virus, oseltamivir or zanamivir should be administered as early as possible to hospitalized patients with suspected novel influenza A (H1N1) virus infection, even before diagnostic testing results are available. Clinicians should be aware that negative results of rapid influenza diagnostic tests, immunoflouresence, or viral culture do not exclude the possibility of novel influenza A (H1N1) virus infection. Although five patients in this case-series received corticosteroids, their role in the management of severely ill patients with novel influenza A (H1N1) virus infection is unclear, and routine corticosteroid use is not recommended.§
Many hospitalized patients with novel influenza A (H1N1) virus infection have had underlying comorbidities recognized to be high-risk conditions for complications of seasonal influenza. However, clinicians should be aware that severe illness and fatal outcomes also can occur in patients without known risk factors for complications of seasonal influenza, including persons with extreme obesity.
Acknowledgment

This report is based, in part, on contributions from C Miller, PhD, Michigan Department of Community Health.
References

  1. CDC. Swine influenza A (H1N1) infection in two children---Southern California, March--April 2009. MMWR 2009;58:400--2.
  2. Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, et al. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med 2009. Available at: http://content.nejm.org/cgi/reprint/NEJMoa0904252.pdf.
  3. CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2008. MMWR 2008;57(No. RR-7).
  4. Smith AG, Sheridan PA, Harp JB, Beck MA. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr 2007;137:1236--43.
  5. Bercault N, Boulain R, Kuteifan K, et al. Obesity-related excess mortality rate in an adult intensive care unit: a risk-adjusted matched cohort study. Crit Care Med 2004;32:998--1003.
  6. Akinnusi ME, Pineda LA, El Solh AA. Effect of obesity on intensive care morbidity and mortality: a meta analysis. Crit Care Med 2008;36:151--8.
  7. Yaegashi M, Jean R, Zuriqat M, Noack S, Homel P. Outcome of morbid obesity in the intensive care unit. J Intensive Care Med 2005;20:147--54.
  8. Schultz MJ, Haitsma JJ, Zhang H, Slutsky AS. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia---a review. Crit Care Med 2006;34:871--7.
  9. van Wissen M, Keller TT, Ronkes B, et al. Influenza infection and risk of acute pulmonary embolism. Thromb J 2007;5:16.
  10. Ohrui T, Takahashi H, Ebihara S, et al. Influenza A virus infection and pulmonary microthromboembolism. Tohoku J Exp Med 2000;192:81--6.
  11. McGeer A, Green KA, Plevneshi A. Shigayeva A, et al Antiviral therapy and outcomes of influenza requiring hospitalization in Ontario, Canada. Clin Infect Dis 2007;45:1568--75.
  12. Hanshaoworakul W, Simmerman JM, Narueponjirakul U, et al. Severe human influenza infections in Thailand: oseltamivir treatment and risk factors for fatal outcome. PlosMed 2009;4:e6051.
  13. Harper SA, Bradley JS, Englund JA, et al. Seasonal influenza in adults and children-diagnosis, treatment, chemoprophylaxis, and institutional outbreak management: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 2009;48:1003--32.
  14. Abdel-Ghafar AN, Chotpitayasunohdh T, Gao Z, et al. Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 2008;358:261--73.
  15. Treanor JJ, Hayden FG, Vrooman PS, et al. Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza. JAMA 2000;282:1016--24.


* Information on the number of cases of novel influenza A (H1N1) virus infection worldwide is available from the World Health Organization at http://www.who.int/csr/don/2009_07_06/en/index.html. Information on the number of cases of novel influenza A (H1N1) virus infection in the United States is available from CDC at http://www.cdc.gov/h1n1flu/update.htm.
† Interim guidance on antiviral recommendations for patients with novel influenza A (H1N1) virus infection and their close contacts is available from CDC at http://www.cdc.gov/h1n1flu/recommendations.htm.
§ Initial guidance on the clinical management of patients with novel influenza A (H1N1) virus infection is available from the World Heallth Organization at http://www.who.int/csr/resources/pub...1_May_2009.pdf.

TABLE. Selected characteristics of intensive-care patients with severe novel influenza A (H1N1) virus infection --- Michigan, June 2009
Patient
Age (yrs)
Sex
Underlying conditions
Initial signs or symptoms
BMI*
No. days between onset and first hospitalization
No. days between illness onset and SICU† admission
Advanced mechanical ventilation


Vaso-pressors
Outcome**






Diagnosis
PE§
MODS¶
1
28
M
Asthma
High fever, cough, sore throat that progressed to blood-tinged sputum, decreasing mental status
34.2
7
8
HFOV††
Yes
Yes
Yes
Death
2
21
M
None
Fever, sore throat, dry cough, sneezing; progressed to tachypnea and dyspnea
50.5
7
8
Bilevel
Yes
Yes
Yes
Improved, transferred
3
48
F
Asthma, smoker
Shortness of breath, rhinorrhea, non-productive cough
58.9
5
9
HFOV
No
Yes
Yes
Improved, transferred
4
35
M
None
Upper respiratory tract illness symptoms
51.7
6
8
HFOV
Yes
No
No
Improved, transferred
5
43
M
None
Fever, cough, malaise, chills, sweats
48.7
4
5
HFOV to ECMO§§
Yes
Yes
Yes
Death
6
52
M
None
Sinus drainage, cough with clear sputum production, decreased appetite
NA¶¶
6
13
HFOV
Yes
Yes
Yes
Improved, transferred
7
44
M
None
Fever, productive cough with black/red sputum, nausea, vomiting, diarrhea
50.2
5
7
HFOV
No
Yes
Yes
Death
8
51
M
Granulomatous chronic lung disease
Fever, worsening dyspnea, rigors, nausea, vomiting, malaise
39.7
1
9
HFOV to ECMO
No
Yes
Yes
ECMO plus ventilator
9
53
M
None
Fever, chills, cough, shortness of breath
38.5
7
16
HFOV
No
Yes
Yes
Improved, transferred
10
53
M
None
Fever, cough
47.8
6
6
HFOV
No
Yes
Yes
HFOV
* Body mass index. Based on admitting weight at University of Michigan Health System surgical intensive care unit.
† Surgical intensive care unit.
§ Pulmonary emboli.
¶ Multiorgan dysfunction syndrome.
** As of July 8, 2009.
†† High-frequency oscillatory ventilation.
§§ Extracorporeal membrane oxygenation.
¶¶ Not available. Height unknown; weight = 72 kg.






Reply With Quote
Reply


Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On


Disclaimers:

The reader is responsible for discerning the validity, factuality or implications of information posted here, be it fictional or based on real events. Moderators on this forum make every effort to review the material posted on this site however, it is not realistically possible for our staff to manually review each post.

The content of posts on this site, including but not limited to links to other web sites, are the expressed opinion of the original authors or posters and are not endorsed by, or representative of the opinions of, the owners or administration of this website. The posts on this website are the opinion of the specific author or poster and should not be construed as statements of advice or factual information.

Not all posts on this website are intended as truthful or factual assertion by their authors. NO posts on this website should be considered factual information on face value alone. Users are encouraged to USE DISCERNMENT and do their own follow up research while reading and posting on this website. FluTrackers.com Inc. reserves the right to make changes to, corrections and/or remove entirely at any time posts made on this website without notice. In addition, FluTrackers.com Inc. disclaims any and all liability for damages incurred directly or indirectly as a result of a post on this website.

This site is provided "as is" without warranty of any kind, either expressed or implied. You should not assume that this site is error-free or that it will be suitable for the particular purpose which you have in mind when using it. In no event shall FluTrackers.com Inc. be liable for any special, incidental, indirect or consequential damages of any kind, or any damages whatsoever, including, without limitation, those resulting from loss of use, data or profits, whether or not advised of the possibility of damage, and on any theory of liability, arising out of or in connection with the use or performance of this site or other documents which are referenced by or linked to this site.

Finally, FluTrackers.com Inc. reserves the right to delete, correct, or make changes to any post on this website without notice at any time for any reason.

Fair Use Notice:
This site may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. Users may make such material available in an effort to advance awareness and understanding of issues relating to public health, civil rights, economics, individual rights, international affairs, liberty, science & technology, etc. We believe this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C.Section 107, the material on this site is distributed to those who have expressed a prior interest in receiving the included information for research and educational purposes.

In accordance with industry accepted best practices we ask that users limit their copy / paste of copyrighted material to the relevant portions of the article you wish to discuss and no more than 1 paragraph, and in no case more than 50% of the source material provide a link back to the original article and provide your original comments / criticism in your post with the article. Please remember you are responsible for what you post on the internet and you could be sued by the original copyright holder if you do not honor these rules.

If you are a legal copyright holder or a designated agent for such and you believe a post on this website falls outside the boundaries of "Fair Use" and legitimately infringes on yours or your clients copyright

we may be contacted concerning copyright matters at:

FluTrackers.com Inc.
c/o Sharon Sanders
1676 Hibiscus Avenue
Winter Park, Florida 32789
Phone: 407-745-1513
E-Mail: flutrackers@earthlink.net

In accordance with section 512 of the U.S. Copyright Act our contact information has been registered with the United States Copyright Office. "Safe Harbor" noticing procedures as outlined in the DMCA apply to this website concerning all 3rd party posts published herein.

If notice is given of an alleged copyright violation we will act expeditiously to remove or disable access to the material(s) in question.

All 3rd party material posted on this website is the copyright of the respective owners / authors. FluTrackers.com Inc. makes no claim of copyright on such material.

For more information please visit: http://www.law.cornell.edu/uscode/17/107.shtml

Please be aware any communications sent complaining about a post on this website may be posted publicly at the discretion of the administration.

FluTrackers Does Not Provide Any Medical Advice:

FluTrackers, Inc. does not provide medical advice. Information on this web site is collected from various internet resources, and the FluTrackers board of directors makes no warranty to the safety, efficacy, correctness or completeness of the information posted on this site by any author or poster.

The information collated here is for instructional and/or discussion purposes only and is NOT intended to diagnose or treat any disease, illness, or other medical condition. Every individual reader or poster should seek advice from their personal physician/healthcare practitioner before considering or using any interventions that are discussed on this website.

By continuing to access this website you agree to consult your personal physican before using any interventions posted on this website, and you agree to hold harmless FluTrackers.com Inc., the board of directors, the members, and all authors and posters for any effects from use of any medication, supplement, vitamin or other substance, device, intervention, etc. mentioned in posts on this website, or other internet venues referenced in posts on this website.

By using and/or accessing this site, either passively or actively, you are agreeing to all of the above conditions. Also, by using and/or accessing this site, either passively or actively, you agree to conduct all business and legal affairs related to this website in the jurisdiction of Flutrackers.com Inc. which is registered in Central Florida, USA.

These Disclaimers are subject to change at anytime.

Email the Webmaster with questions or comments about this site at flutrackers@earthlink.net


All times are GMT -4. The time now is 12:00 PM.


H1N1 Influenza Swine Flu Avian Flu Infectious Diseases. Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Template-Modifications by TMS