Announcement

Collapse
No announcement yet.

Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after...

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after...

    Another article looking at H5N1 PB2 position 627. This paper reinforces the idea that passage in mammalian hosts provides sufficient selective pressure for the E627K substitution, which in turn results in increased virulence in mammals.




    (J Gen Virol 87 (2006), 3655-3659; DOI 10.1099/vir.0.81843-0)



    Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after a single passage in mice

    Masaji Mase, Nobuhiko Tanimura, Tadao Imada, Masatoshi Okamatsu, Kenji Tsukamoto and Shigeo Yamaguchi

    Department of Infectious Diseases, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan


    To evaluate the potential pathogenicity to mammals of the recent H5N1 avian Influenza A virus, viruses recovered from dead mice infected with A/chicken/Yamaguchi/7/2004 isolated in Japan were examined. All recovered viruses from the brains of dead mice infected with this strain (without any prior adaptation to mice) had substituted the amino acid at position 627 of the PB2 protein from glutamic acid to lysine. Their mouse lethality had increased by approximately 5x104 times over that of the original virus. Histopathological analysis reinforced the finding that these variants caused more rapid and severe damage to mice than the original virus. This revealed that it might be useful to characterize the recovered virus to assess its potential pathogenicity to mammals.

  • #2
    Re: Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after...

    Thanks Aardvark!
    Just one single passage, that's very concerning.
    Here is the complete article...

    _____________________________________________

    http://vir.sgmjournals.org/cgi/content/full/87/12/3655

    <TABLE cellSpacing=0 cellPadding=0><TBODY><TR><TD>Short Communication

    </TD></TR></TBODY></TABLE>
    Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after a single passage in mice

    </NOBR><NOBR>Masaji Mase</NOBR>, <NOBR>Nobuhiko Tanimura</NOBR>, <NOBR>Tadao Imada</NOBR>, <NOBR>Masatoshi Okamatsu</NOBR>, <NOBR>Kenji Tsukamoto</NOBR> and <NOBR>Shigeo Yamaguchi</NOBR>


    Department of Infectious Diseases, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan

    Correspondence<SUP> </SUP>
    Masaji Mase<SUP> </SUP>
    masema@affrc.go.jp<SCRIPT type=text/javascript><!-- var u = "masema", d = "affrc.go.jp"; document.getElementById("em0").innerHTML = '<a href="mailto:' + u + '@' + d + '">' + u + '@' + d + '<\/a>'//--></SCRIPT>
    <!-- null -->
    <TABLE cellSpacing=0 cellPadding=0 width="100%" bgColor=#e1e1e1><TBODY><TR><TD vAlign=center align=left width="5%" bgColor=#ffffff></TD><TH vAlign=center align=left width="95%"> ABSTRACT </TH></TR></TBODY></TABLE><TABLE cellPadding=5 align=right border=1><TBODY><TR><TH align=left>TOP
    ABSTRACT
    MAIN TEXT
    REFERENCES
    </TH></TR></TBODY></TABLE>
    To evaluate the potential pathogenicity to mammals of the recent<SUP> </SUP>H5N1 avian Influenza A virus, viruses recovered from dead mice<SUP> </SUP>infected with A/chicken/Yamaguchi/7/2004 isolated in Japan were<SUP> </SUP>examined. All recovered viruses from the brains of dead mice<SUP> </SUP>infected with this strain (without any prior adaptation to mice)<SUP> </SUP>had substituted the amino acid at position 627 of the PB2 protein<SUP> </SUP>from glutamic acid to lysine. Their mouse lethality had increased<SUP> </SUP>by approximately 5x10<SUP>4</SUP> times over that of the original virus.<SUP> </SUP>Histopathological analysis reinforced the finding that these<SUP> </SUP>variants caused more rapid and severe damage to mice than the<SUP> </SUP>original virus. This revealed that it might be useful to characterize<SUP> </SUP>the recovered virus to assess its potential pathogenicity to<SUP> </SUP>mammals.<SUP> </SUP>
    <!-- null -->
    <TABLE cellSpacing=0 cellPadding=0 width="100%" bgColor=#e1e1e1><TBODY><TR><TD vAlign=center align=left width="5%" bgColor=#ffffff></TD><TH vAlign=center align=left width="95%"> MAIN TEXT </TH></TR></TBODY></TABLE><TABLE cellPadding=5 align=right border=1><TBODY><TR><TH align=left>TOP
    ABSTRACT
    MAIN TEXT
    REFERENCES
    </TH></TR></TBODY></TABLE>
    Beginning in 2003, the highly pathogenic H5N1 avian influenza<SUP> </SUP>virus has caused great economic losses in the poultry industry<SUP> </SUP>throughout east Asia, including Japan (Chen et al., 2004, 2005;<SUP> </SUP>Li et al., 2004; Liu et al., 2005; Mase et al., 2005b). Incidents<SUP> </SUP>of the causative H5N1 virus being transmitted directly from<SUP> </SUP>birds to humans occurred in 1997 and 2003 in Hong Kong (Peiris<SUP> </SUP>et al., 2004; Subbarao et al., 1998; Yuen et al., 1998). From<SUP> </SUP>2004 to 2006, these viruses were transmitted to humans in Azerbaijan,<SUP> </SUP>Cambodia, China, Egypt, Indonesia, Iraq, Thailand, Turkey and<SUP> </SUP>Vietnam, and this transmission resulted in over 100 deaths (WHO,<SUP> </SUP>2006). Therefore, an epidemic of H5N1 avian influenza still<SUP> </SUP>poses a serious threat to public health.<SUP> </SUP>
    Mice have been shown to be a good mammalian model for the human<SUP> </SUP>H1N1, H2N2 and H3N2 influenza viruses. Therefore, mice were<SUP> </SUP>used for the H5N1 influenza viruses as well, and it was revealed<SUP> </SUP>that recent isolates of the H5N1 influenza virus replicated<SUP> </SUP>well in mice without prior adaptation (Gao et al., 1999; Guan<SUP> </SUP>et al., 2002, 2004; Lipatov et al., 2003; Lu et al., 1999; Nishimura<SUP> </SUP>et al., 2000; Shortridge et al., 1998).<SUP> </SUP>
    In Japan, an outbreak of highly pathogenic H5N1 avian influenza<SUP> </SUP>in chickens was confirmed in 2004 for the first time (Mase et<SUP> </SUP>al., 2005b). The causative H5N1 viruses in Japan were genetically<SUP> </SUP>close to A/chicken/Shantou/4231/2003, termed genotype V, which<SUP> </SUP>belongs to a genotype different from that of the dominant epidemic<SUP> </SUP>viruses in South-East Asian countries, such as Indonesia, Thailand<SUP> </SUP>and Vietnam (i.e. genotype Z) (Li et al., 2004). This suggested<SUP> </SUP>that multiple H5N1 virus genotypes have been circulating and<SUP> </SUP>are associated with the occurrence of the serious outbreaks<SUP> </SUP>in poultry in Asian countries.<SUP> </SUP>
    The H5N1 virus isolated in Japan during the 2003?2004<SUP> </SUP>outbreaks was able to replicate in mice without prior adaptation,<SUP> </SUP>but the the isolate was less virulent than the Hong Kong 1997<SUP> </SUP>H5N1 viruses isolated from humans (Gao et al., 1999; Mase et<SUP> </SUP>al., 2005b). However, it was previously revealed experimentally<SUP> </SUP>that highly pathogenic H5N1 variants could be selected rapidly<SUP> </SUP>in mice after a single passage (Lipatov et al., 2003). Here,<SUP> </SUP>we describe the biological and pathological characterization<SUP> </SUP>of recovered viruses with rapidly increasing virulence to mice<SUP> </SUP>by only one amino acid substitution in the complete genome after<SUP> </SUP>a single passage in mice.<SUP> </SUP>
    The Japanese H5N1 virus A/chicken/Yamaguchi/7/2004 (Ck/Yama/7/04),<SUP> </SUP>isolated from chickens (Mase et al., 2005b), was used in this<SUP> </SUP>study. To prepare the original virus stock for this study, virus<SUP> </SUP>was propagated once in the allantoic cavity of embryonated eggs<SUP> </SUP>at 37 ?C for 1?2 days and then stored at ?80<SUP> </SUP>?C until use. All experiments using the live H5N1 virus<SUP> </SUP>were performed in biosafety level 3 facilities under the recommended<SUP> </SUP>procedures.<SUP> </SUP>
    First, we examined the pathogenicity to mice of the original<SUP> </SUP>Ck/Yama/7/04 strain. Six-week-old female BALB/c mice (n=18;<SUP> </SUP>SLC Japan) were used in all experiments. The mice were anaesthetized<SUP> </SUP>by pentobarbital injection and 50 ?l infectious virus<SUP> </SUP>[10<SUP>6</SUP> 50 % egg infectious dose (EID<SUB>50</SUB>)] diluted in PBS was inoculated<SUP> </SUP>intranasally (i.n.). The mice were checked daily for clinical<SUP> </SUP>signs and mortality for 14 days post-infection (p.i.).<SUP> </SUP>Reisolation of the virus from the brain, lung, liver, spleen<SUP> </SUP>and kidney of the dead mice was conducted immediately after<SUP> </SUP>the animals' deaths, as described previously (Mase et al., 2005a).<SUP> </SUP>
    Fourteen mice in total died during the observation period, and<SUP> </SUP>the virus was reisolated from the brains of all dead mice. The<SUP> </SUP>mean time to death of the mice infected with the original Ck/Yama/7/04<SUP> </SUP>strain was 8.3 days. To examine the extent of mutations,<SUP> </SUP>we determined the nucleotide sequences of isolates from the<SUP> </SUP>mouse brains. First, partial nucleotide sequences of the PB2<SUP> </SUP>gene, which was related to the virulence to mice of the Hong<SUP> </SUP>Kong H5N1/97 viruses, of all isolates from the mouse brains<SUP> </SUP>were determined. Reverse transcription, PCR amplification and<SUP> </SUP>sequencing were performed as described previously (Mase et al.,<SUP> </SUP>2005b).<SUP> </SUP>
    All viruses recovered from the brains of dead mice inoculated<SUP> </SUP>with the Ck/Yama/7/04 strain had an amino acid substitution<SUP> </SUP>from glutamic acid (Glu) to lysine (Lys) at position 627 of<SUP> </SUP>the PB2 protein, as shown by partial nucleotide sequencing of<SUP> </SUP>the PB2 gene. Next, the complete nucleotide sequences of all<SUP> </SUP>segments of five chosen isolates (termed mouse brain variants;<SUP> </SUP>MBVs) recovered from five respective mice were determined as<SUP> </SUP>described previously (Mase et al., 2005a). Interestingly, as<SUP> </SUP>for the results of the complete nucleotide sequencing of all<SUP> </SUP>segments of the five chosen recovered isolates, four viruses<SUP> </SUP>have only one amino acid substitution at position 627 of the<SUP> </SUP>PB2 protein from Glu to Lys. From these viruses, one isolate<SUP> </SUP>was selected and designated mouse brain variant A (MBV-A). The<SUP> </SUP>remaining isolate has an additional amino acid substitution,<SUP> </SUP>methionine (Met) to isoleucine (Ile), at position 531 of the<SUP> </SUP>haemagglutinin (HA), and was designated MBV-B. In the following<SUP> </SUP>tests, the MBV-A and -B strains were used as mouse variants<SUP> </SUP>derived from the original Ck/Yama/7/04 strain.<SUP> </SUP>
    Next, the pathogenicity to mice of the original virus and MBVs<SUP> </SUP>were compared. Six-week-old female BALB/c mice (SLC Japan) were<SUP> </SUP>used. Fifty per cent mouse infectious dose (MID<SUB>50</SUB>) and 50 %<SUP> </SUP>mouse lethal dose (MLD<SUB>50</SUB>) titres were determined by inoculating<SUP> </SUP>groups of eight mice i.n. with serial 10-fold dilutions of virus<SUP> </SUP>according to the method described by Lu et al. (1999). Three<SUP> </SUP>days later, four mice from each group were euthanized and the<SUP> </SUP>lungs were collected and homogenized. The homogenates were frozen<SUP> </SUP>at ?80 ?C and later thawed for ease of handling. Solid<SUP> </SUP>debris was pelleted by centrifugation and the supernatants were<SUP> </SUP>titrated for virus infectivity in eggs. The four remaining mice<SUP> </SUP>in each group were checked daily for disease signs and death<SUP> </SUP>for 14 days p.i. The MID<SUB>50</SUB> and MLD<SUB>50</SUB> titres were calculated<SUP> </SUP>by the method of Reed & Muench (1938).<SUP> </SUP>
    The scores of MID<SUB>50</SUB> and MLD<SUB>50</SUB> of the two MBVs were 5 EID<SUB>50</SUB> and<SUP> </SUP>8.9 EID<SUB>50</SUB>, respectively. However, the scores of MID<SUB>50</SUB> and MLD<SUB>50</SUB><SUP> </SUP>of the original Ck/Yama/7/04 strain were 5x10<SUP>3</SUP> EID<SUB>50</SUB> and 5x10<SUP>5</SUP><SUP> </SUP>EID<SUB>50</SUB>, respectively. Comparing these scores, the MLD<SUB>50</SUB> of two<SUP> </SUP>MBVs were increased by 5x10<SUP>4</SUP> times over that of the original<SUP> </SUP>Ck/Yama/7/04 strain.<SUP> </SUP>
    Next, a histopathological examination of the mice infected with<SUP> </SUP>the original and MBV-A viruses was performed. Six-week-old female<SUP> </SUP>BALB/c mice (n=18 for each of the original and MBV-A viruses)<SUP> </SUP>were inoculated i.n. with 50 ?l virus (10<SUP>6</SUP> EID<SUB>50</SUB>).<SUP> </SUP>A total of three sacrificed or dead mice were examined on day<SUP> </SUP>3 and another three on day 6 p.i. The major organs were removed<SUP> </SUP>and fixed in 10 % neutral phosphate-buffered formalin, then<SUP> </SUP>processed routinely and stained with haematoxylin and eosin<SUP> </SUP>(HE) for histopathological examination. A section mounted on<SUP> </SUP>silane-coated slide glass was heated by microwave as described<SUP> </SUP>previously (Tanimura et al., 2004) and goat anti-influenza A<SUP> </SUP>virus polyclonal antibody (Chemicon) was applied. The primary<SUP> </SUP>antibody was allowed to incubate for 30 min at room temperature<SUP> </SUP>and then detected by the application of horseradish peroxidase<SUP> </SUP>anti-goat Ig conjugate (Histofine Simple Stain; Nichirei Inc.).<SUP> </SUP>Diaminobenzidine (Nichirei Inc.) served as the substrate chromogen<SUP> </SUP>and haematoxylin was used as a counterstain. For the negative<SUP> </SUP>control, the primary antibody was applied to tissues of a normal<SUP> </SUP>mouse. In addition, the primary antibody was substituted with<SUP> </SUP>normal goat serum (DakoCytomation). There was no non-specific<SUP> </SUP>staining in these negative controls, except for the mast cells<SUP> </SUP>in the connective tissue, which showed endogenous peroxidase<SUP> </SUP>activity in their cytoplasmic granules. The viral titres of<SUP> </SUP>the brain, lung, liver, spleen and kidney of these mice were<SUP> </SUP>determined as described previously (Mase et al., 2005b).<SUP> </SUP>
    The results of the histopathological and immunohistochemical<SUP> </SUP>analyses are summarized in Table 1. In the respiratory<SUP> </SUP>organs, such as the lungs and nasal turbinates, severe damage<SUP> </SUP>and viral antigens were detected earlier in the MBV-A-infected<SUP> </SUP>mice than in those infected with the original strain (Table 1b;<SUP> </SUP>Fig. 1a?d). Viral antigen-positive alveolar cells<SUP> </SUP>appeared to be alveolar macrophages or type II alveolar epithelial<SUP> </SUP>cells. In the central nervous system (CNS), whereas viral antigens<SUP> </SUP>were detected in the MBV-A-infected mice at day 3 p.i., they<SUP> </SUP>were not detected in the original Ck/Yama/7/04-infected mice<SUP> </SUP>until day 6 p.i. (Table 1b; Fig. 1e). Lesions and<SUP> </SUP>viral antigens were only observed in the olfactory bulbs of<SUP> </SUP>the MBV-A strain-infected mice (Fig. 1f).<SUP> </SUP>
    <!-- null -->
    <CENTER><TABLE cellSpacing=0 cellPadding=0 width="95%"><TBODY><TR bgColor=#e1e1e1><TD><TABLE cellSpacing=2 cellPadding=2><TBODY><TR bgColor=#e1e1e1><TD vAlign=top align=middle bgColor=#ffffff>View this table:
    <NOBR>[in this window]
    [in a new window]
    </NOBR> </TD><TD vAlign=top align=left>Table 1. Histopathological changes of and distribution of viral antigen-positive cells in sacrificed or dead mice at days 3 and 6 post-infection
    (a) Lesions: ?, no significant lesion; ?, minimum; +, mild; ++, intermediate; +++, severe. (b) No. viral antigen-positive cells: ?, negative; ?, minimum; +, small; ++, intermediate; +++, large.
    </TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE></CENTER>
    <!-- null -->

    <CENTER><TABLE cellSpacing=0 cellPadding=0 width="95%"><TBODY><TR bgColor=#e1e1e1><TD><TABLE cellSpacing=2 cellPadding=2><TBODY><TR bgColor=#e1e1e1><TD vAlign=top align=middle bgColor=#ffffff>
    View larger version (159K):
    <NOBR>[in this window]
    [in a new window]
    </NOBR> </TD><TD vAlign=top align=left>Fig. 1. Histological and immunohistochemical analyses of lung (a?d), thoracic spinal cord (e) and olfactory bulb (f) obtained from mice. (a) Lung; original Ck/Yama/7/04 strain-infected mouse at day 6 p.i. Mild bronchointerstitial pneumonia is present. HE stain. (b) Lung; original Ck/Yama/7/04 strain-infected mouse at day 6 p.i. A small amount of viral antigen is present in the epithelium of the bronchiolus and alveolar cells. Immunoperoxidase labelling, haematoxylin counterstain. (c) Lung; MBV-A strain-infected mouse at day 6 p.i. Severe necrotizing bronchiolitis and diffuse alveolar damage can be seen. HE stain. (d) Lung; MBV-A strain-infected mouse at day 6 p.i. Abundant viral antigen is present in the epithelium of the bronchiolus and alveolar cells. Immunoperoxidase labelling, haematoxylin counterstain. (e) Thoracic spinal cord; original Ck/Yama/7/04 strain-infected mouse at day 6 p.i. Viral antigen is present in the neurons, glial cells and central canal ependymal cells. Immunoperoxidase labelling, haematoxylin counterstain. (f) Olfactory bulb; MBV-A strain-infected mouse at day 3 p.i. Viral antigen is present in the neurons. Immunoperoxidase labelling, haematoxylin counterstain. Magnification, x20 (a?d); x10 (e); x40 (f).
    </TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE></CENTER>
    Viruses were recovered from all organs collected from the MBV-A<SUP> </SUP>strain-infected mice at day 3, whereas viruses were recovered<SUP> </SUP>only from the lung and spleen collected from the original virus-infected<SUP> </SUP>mice (Table 2). The virus titres of the variant virus-infected<SUP> </SUP>mice were higher than those of the original virus-infected mice.<SUP> </SUP>At day 6 p.i., viruses were recovered from all examined organs<SUP> </SUP>except the kidneys collected from MBV-A strain-infected mice.<SUP> </SUP>

    <!-- null -->
    <CENTER><TABLE cellSpacing=0 cellPadding=0 width="95%"><TBODY><TR bgColor=#e1e1e1><TD><TABLE cellSpacing=2 cellPadding=2><TBODY><TR bgColor=#e1e1e1><TD vAlign=top align=middle bgColor=#ffffff>View this table:
    <NOBR>[in this window]
    [in a new window]
    </NOBR> </TD><TD vAlign=top align=left>Table 2. Growth of original Ck/Yama/7/04 and MBV-A strains in mice
    Virus titres in the organs shown were determined. Mean?SD is shown for the number of virus-positive mice that died or were sacrificed.
    </TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE></CENTER>
    The outbreaks beginning in 2003 of the highly pathogenic H5N1<SUP> </SUP>avian influenza virus in many Asian countries, including Japan,<SUP> </SUP>have posed a very serious threat to public health. Ever since<SUP> </SUP>H5N1 viruses killed humans in 1997 for the first time in Hong<SUP> </SUP>Kong, this virus has often been transmitted from poultry to<SUP> </SUP>humans and has recently caused human deaths again in several<SUP> </SUP>countries (WHO, 2006). The molecular basis of the lethal virulence<SUP> </SUP>of the recent epidemic H5N1 viruses to humans in these countries<SUP> </SUP>is not understood completely, but in the case of Hong Kong H5N1<SUP> </SUP>in 1997, the molecular basis of the high virulence was studied<SUP> </SUP>in the mouse model (Hatta et al., 2001). By using reverse genetics,<SUP> </SUP>a Lys at residue 627 in the PB2 protein and polybasic cleavage<SUP> </SUP>site in HA were found to be crucial for the highly virulent<SUP> </SUP>and systematic replication of the A/Hong Kong/483/97 (H5N1)<SUP> </SUP>virus in mice. In particular, the presence of Lys leads to more<SUP> </SUP>aggressive virus replication, overwhelming the host's defence<SUP> </SUP>mechanisms and resulting in high mortality rates in mice (Gabriel<SUP> </SUP>et al., 2005; Massin et al., 2001; Naffakh et al., 2000; Shinya<SUP> </SUP>et al., 2004; Subbarao et al., 1993). Interestingly, the Dutch<SUP> </SUP>H7N7 virus isolated in 2003 from humans had Lys at position<SUP> </SUP>627 of the PB2 protein, whereas H7N7 in 2003 isolated from chickens<SUP> </SUP>maintained Glu at this position (Fouchier et al., 2004). The<SUP> </SUP>PB2s of most human H1N1, H2N2 and H3N2 influenza viruses examined<SUP> </SUP>thus far possess Lys at position 627, whereas those of their<SUP> </SUP>progenitor avian viruses examined thus far all contain Glu at<SUP> </SUP>this position (Wright & Webster, 2001). Taken together,<SUP> </SUP>it was suggested that the substitution of Glu to Lys at this<SUP> </SUP>position arises easily in transmission from birds to mammals.<SUP> </SUP>

    Here, we demonstrated experimentally that the Japanese H5N1<SUP> </SUP>viruses isolated in 2004 substituted their amino acid at position<SUP> </SUP>627 of the PB2 protein from Glu to Lys after a single passage<SUP> </SUP>in mice, with increasing virulence. A variant virus containing<SUP> </SUP>Lys at position 627 replicated more rapidly than the original<SUP> </SUP>virus containing Glu at this position. This substitution may<SUP> </SUP>be a first step for adaptation to mammals, as human H1N1, H2N2<SUP> </SUP>and H3N2 influenza viruses have Lys at position 627 of the PB2<SUP> </SUP>protein (Wright & Webster, 2001). Comparing the MID<SUB>50</SUB> and<SUP> </SUP>MLD<SUB>50</SUB> of both the MBV-A and MBV-B viruses, the amino acid substitution<SUP> </SUP>at position 531 of the HA seemed not to be critical for high<SUP> </SUP>virulence. By pathological analysis of the MBV-A-infected mice,<SUP> </SUP>severe pneumonia was observed in the earlier phase (3 days<SUP> </SUP>p.i.) and encephalomyelitis was also observed at the later phase<SUP> </SUP>(6 days p.i.). Viruses were recovered from the internal<SUP> </SUP>organs of the MBV-A-infected mice, but the virus titres of the<SUP> </SUP>tissues at 6 days p.i. were lower than those at 3 days<SUP> </SUP>p.i., except in the brain. Moreover, histopathological analysis<SUP> </SUP>suggested that the viruses isolated from the kidney might be<SUP> </SUP>derived from adipose tissues around this organ. However, the<SUP> </SUP>appearance of mild lesions and the detection of viral antigens<SUP> </SUP>in the olfactory bulb in MBV-A-infected mice suggested rapid<SUP> </SUP>replication and spreading in this tissue. The routes of invasion<SUP> </SUP>of the HK483 strain into the CNS were suggested previously to<SUP> </SUP>be through afferent fibres of the olfactory, vagal, trigeminal<SUP> </SUP>and sympathetic nerves following replication in the respiratory<SUP> </SUP>mucosa (Park et al., 2002). The invasion of the MBV-A strain<SUP> </SUP>into the CNS in mice seemed to be facilitated strongly by these<SUP> </SUP>three routes compared with the original strain.<SUP> </SUP>
    Although the Japanese H5N1 viruses were different in H5N1 genotype<SUP> </SUP>(genotype V) from the South-East Asian isolates of H5N1, including<SUP> </SUP>those from Thailand and Vietnam (genotype Z), the PB2 protein<SUP> </SUP>of Japanese H5N1 (Ck/Yama/7/04) was very similar (about 99.5<SUP> </SUP>%) to that of Thailand H5N1 (A/goose/Thailand/79/2004) at the<SUP> </SUP>amino acid level. In fact, many recent H5N1 isolates (genotype<SUP> </SUP>Z) from mammals have this substitution at position 627 of the<SUP> </SUP>PB2 protein (Govorkova et al., 2005; Keawcharoen et al., 2004;<SUP> </SUP>Puthavathana et al., 2005). Urgent measures to deal with a possible<SUP> </SUP>pandemic, such as the development and application of effective<SUP> </SUP>vaccines and the stockpiling of anti-influenza drugs, are needed.<SUP> </SUP>
    <SUP></SUP>
    <!-- null -->
    <TABLE cellSpacing=0 cellPadding=0 width="100%" bgColor=#e1e1e1><TBODY><TR><TD vAlign=center align=left width="5%" bgColor=#ffffff></TD><TH vAlign=center align=left width="95%"> ACKNOWLEDGEMENTS </TH></TR></TBODY></TABLE>
    We would like to thank Mr M. Kobayashi and Ms M. Shimada for<SUP> </SUP>preparing the histopathology sections. This work was supported<SUP> </SUP>by a Grant-in-Aid from the Zoonoses Control Project of the Ministry<SUP> </SUP>of Agriculture, Forestry and Fisheries, Japan.<SUP> </SUP>
    <!-- null -->
    <TABLE cellSpacing=0 cellPadding=0 width="100%" bgColor=#e1e1e1><TBODY><TR><TD vAlign=center align=left width="5%" bgColor=#ffffff></TD><TH vAlign=center align=left width="95%"> REFERENCES </TH></TR></TBODY></TABLE><TABLE cellPadding=5 align=right border=1><TBODY><TR><TH align=left>TOP
    ABSTRACT
    MAIN TEXT
    REFERENCES
    </TH></TR></TBODY></TABLE>
    <!-- null -->Chen, H., Deng, G., Li, Z. & 7 other authors (2004). The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A 101, 10452?10457.<!-- HIGHWIRE ID="87:12:3655:1" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Chen, H., Smith, G. J. D., Zhang, S. Y., Qin, K., Wang, J., Li, K. S., Webster, R. G., Peiris, J. S. M. & Guan, Y. (2005). Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436, 191?192.<!-- HIGHWIRE ID="87:12:3655:2" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->Fouchier, R. A. M., Schneeberger, P. M., Rozendaal, F. W. & 11 other authors (2004). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101, 1356?1361.<!-- HIGHWIRE ID="87:12:3655:3" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Gabriel, G., Dauber, B., Wolff, T., Planz, O., Klenk, H.-D. & Stech, J. (2005). The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 102, 18590?18595.<!-- HIGHWIRE ID="87:12:3655:4" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Gao, P., Watanabe, S., Ito, T., Goto, H., Wells, K., McGregor, M., Cooley, A. J. & Kawaoka, Y. (1999). Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol 73, 3184?3189.<!-- HIGHWIRE ID="87:12:3655:5" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Govorkova, E. A., Rehg, J. E., Krauss, S. & 11 other authors (2005). Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. J Virol 79, 2191?2198.<!-- HIGHWIRE ID="87:12:3655:6" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Guan, Y., Peiris, J. S. M., Lipatov, A. S., Ellis, T. M., Dyrting, K. C., Krauss, S., Zhang, L. J., Webster, R. G. & Shortridge, K. F. (2002). Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99, 8950?8955.<!-- HIGHWIRE ID="87:12:3655:7" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Guan, Y., Poon, L. L. M., Cheung, C. Y. & 10 other authors (2004). H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A 101, 8156?8161.<!-- HIGHWIRE ID="87:12:3655:8" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840?1842.<!-- HIGHWIRE ID="87:12:3655:9" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Keawcharoen, J., Oraveerakul, K., Kuiken, T. & 12 other authors (2004). Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis 10, 2189?2191.<!-- HIGHWIRE ID="87:12:3655:10" -->[Medline]<!-- /HIGHWIRE -->
    <!-- null -->Li, K. S., Guan, Y., Wang, J. & 19 other authors (2004). Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209?213.<!-- HIGHWIRE ID="87:12:3655:11" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->Lipatov, A. S., Krauss, S., Guan, Y., Peiris, M., Rehg, J. E., Perez, D. R. & Webster, R. G. (2003). Neurovirulence in mice of H5N1 influenza virus genotypes isolated from Hong Kong poultry in 2001. J Virol 77, 3816?3823.<!-- HIGHWIRE ID="87:12:3655:12" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Liu, J., Xiao, H., Lei, F. & 11 other authors (2005). Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309, 1206.<!-- HIGHWIRE ID="87:12:3655:13" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Lu, X., Tumpey, T. M., Morken, T., Zaki, S. R., Cox, N. J. & Katz, J. M. (1999). A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol 73, 5903?5911.<!-- HIGHWIRE ID="87:12:3655:14" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Mase, M., Eto, M., Tanimura, N., Imai, K., Tsukamoto, K., Horimoto, T., Kawaoka, Y. & Yamaguchi, S. (2005a). Isolation of a genotypically unique H5N1 influenza virus from duck meat imported into Japan from China. Virology 339, 101?109.<!-- HIGHWIRE ID="87:12:3655:15" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->Mase, M., Tsukamoto, K., Imada, T. & 11 other authors (2005b). Characterization of H5N1 influenza A viruses isolated during the 2003?2004 influenza outbreaks in Japan. Virology 332, 167?176.<!-- HIGHWIRE ID="87:12:3655:16" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->Massin, P., van der Werf, S. & Naffakh, N. (2001). Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol 75, 5398?5404.<!-- HIGHWIRE ID="87:12:3655:17" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Naffakh, N., Massin, P., Escriou, N., Crescenzo-Chaigne, B. & van der Werf, S. (2000). Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J Gen Virol 81, 1283?1291.<!-- HIGHWIRE ID="87:12:3655:18" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Nishimura, H., Itamura, S., Iwasaki, T., Kurata, T. & Tashiro, M. (2000). Characterization of human influenza A (H5N1) virus infection in mice: neuro-, pneumo- and adipotropic infection. J Gen Virol 81, 2503?2510.<!-- HIGHWIRE ID="87:12:3655:19" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Park, C. H., Ishinaka, M., Takada, A., Kida, H., Kimura, T., Ochiai, K. & Umemura, T. (2002). The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice. Arch Virol 147, 1425?1436.<!-- HIGHWIRE ID="87:12:3655:20" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->Peiris, J. S. M., Yu, W. C., Leung, C. W. & 9 other authors (2004). Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363, 617?619.<!-- HIGHWIRE ID="87:12:3655:21" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->Puthavathana, P., Auewarakul, P., Charoenying, P. C. & 7 other authors (2005). Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. J Gen Virol 86, 423?433.<!-- HIGHWIRE ID="87:12:3655:22" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Reed, L. J. & Muench, H. (1938). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493?497.<!-- HIGHWIRE ID="87:12:3655:23" --><!-- /HIGHWIRE -->
    <!-- null -->Shinya, K., Hamm, S., Hatta, M., Ito, H., Ito, T. & Kawaoka, Y. (2004). PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320, 258?266.<!-- HIGHWIRE ID="87:12:3655:24" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->Shortridge, K. F., Zhou, N. N., Guan, Y. & 12 other authors (1998). Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252, 331?342.<!-- HIGHWIRE ID="87:12:3655:25" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->Subbarao, E. K., Kawaoka, Y. & Murphy, B. R. (1993). Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutation. J Virol 67, 7223?7228.<!-- HIGHWIRE ID="87:12:3655:26" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Subbarao, K., Klimov, A., Katz, J. & 13 other authors (1998). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393?396.<!-- HIGHWIRE ID="87:12:3655:27" --><NOBR>[Abstract/Free Full Text]</NOBR><!-- /HIGHWIRE -->
    <!-- null -->Tanimura, N., Imada, T., Kashiwazaki, Y., Shamusudin, S., Syed Hassan, S., Jamaluddin, A., Russell, G. & White, J. (2004). Reactivity of anti-Nipah virus monoclonal antibodies to formalin-fixed, paraffin-embedded lung tissues from experimental Nipah and Hendra virus infections. J Vet Med Sci 66, 1263?1266.<!-- HIGHWIRE ID="87:12:3655:28" -->[CrossRef][Medline]<!-- /HIGHWIRE -->
    <!-- null -->WHO (2006). Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. http://www.who.int/csr/disease/avian_influenza/country/cases_table_2006_06_16/en/index.html<!-- HIGHWIRE ID="87:12:3655:29" --><!-- /HIGHWIRE -->
    <!-- null -->Wright, P. F. & Webster, R. G. (2001). Orthomyxoviruses. In Fields Virology, 4th edn, pp. 1538?1579. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.<!-- HIGHWIRE ID="87:12:3655:30" --><!-- /HIGHWIRE -->
    <!-- null -->Yuen, K. Y., Chan, P. K. S., Peiris, M. & 8 other authors (1998). Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467?471.<!-- HIGHWIRE ID="87:12:3655:31" -->[CrossRef][Medline]<!-- /HIGHWIRE --> Received 20 January 2006; accepted 29 July 2006.

    Comment


    • #3
      Re: Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after...

      Table 1. Histopathological changes of and distribution of viral antigen-positive cells in sacrificed or dead mice at days 3 and 6 post-infection
      (a) Lesions: ?, no significant lesion; ?, minimum; +, mild; ++, intermediate; +++, severe. (b) No. viral antigen-positive cells: ?, negative; ?, minimum; +, small; ++, intermediate; +++, large.

      <TABLE border=1><TBODY><TR><TD><TABLE cellSpacing=5 cellPadding=0><TBODY><TR><TD vAlign=bottom align=left rowSpan=3>Tissue</TD><TD vAlign=bottom align=middle rowSpan=3>Lesions (a)/antigen-positive cells (b)</TD><TD vAlign=top align=middle colSpan=4>Time post-infection (days)

      <HR noShade SIZE=1></TD></TR><TR><TD vAlign=top align=middle colSpan=2>3

      <HR noShade SIZE=1></TD><TD vAlign=top align=middle colSpan=2>6

      <HR noShade SIZE=1></TD></TR><TR><TD vAlign=top align=middle>Original</TD><TD vAlign=top align=middle>MBV-A</TD><TD vAlign=top align=middle>Original</TD><TD vAlign=top align=middle>MBV-A</TD></TR><TR><TD colSpan=6><HR></TD></TR><TR><TD vAlign=top align=left>(a) Histopathological changes</TD><TD vAlign=top align=middle></TD><TD vAlign=top align=middle></TD><TD vAlign=top align=middle></TD><TD vAlign=top align=middle></TD><TD vAlign=top align=middle></TD></TR><TR><TD vAlign=top align=left>Nasal turbinate</TD><TD vAlign=top align=left>Rhinitis</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+++</TD></TR><TR><TD vAlign=top align=left>Middle ear</TD><TD vAlign=top align=left>Tympanitis</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Lung</TD><TD vAlign=top align=left>Bronchointerstitial pneumonia</TD><TD vAlign=top align=middle>?++</TD><TD vAlign=top align=middle>++</TD><TD vAlign=top align=middle>++++</TD><TD vAlign=top align=middle>+++++</TD></TR><TR><TD vAlign=top align=left>Olfactory bulb</TD><TD vAlign=top align=middle>Degeneration/necrosis of neurons and glial cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Cerebrum</TD><TD vAlign=top align=middle>Degeneration/necrosis of neurons and glial cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+++</TD></TR><TR><TD vAlign=top align=left>Brainstem</TD><TD vAlign=top align=middle>Degeneration/necrosis of neurons and glial cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>+++</TD></TR><TR><TD vAlign=top align=left>Cervical spinal cord</TD><TD vAlign=top align=middle>Degeneration/necrosis of neurons and glial cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Truncus sympathicus ganglion</TD><TD vAlign=top align=left>Necrotic ganglionitis</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+++</TD><TD vAlign=top align=middle>+++++</TD></TR><TR><TD vAlign=top align=left>Thoracic spinal cord</TD><TD vAlign=top align=middle>Degeneration/necrosis of neurons and glial cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>+++</TD></TR><TR><TD vAlign=top align=left>Lumbar spinal cord</TD><TD vAlign=top align=middle>Degeneration/necrosis of neurons and glial cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Liver</TD><TD vAlign=top align=left>Focal necrosis of hepatocytes</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Spleen</TD><TD vAlign=top align=left>Focal necrosis, hyperplasia of reticulum cells</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD></TR><TR><TD vAlign=top align=left colSpan=2>(b) Distribution of viral antigen-positive cells
      <HR noShade SIZE=1></TD><TD vAlign=top align=middle></TD><TD vAlign=top align=middle></TD><TD vAlign=top align=middle></TD><TD vAlign=top align=middle></TD><TD vAlign=top align=middle></TD></TR><TR><TD vAlign=top align=left>Respiratory area of nasal cavity</TD><TD vAlign=top align=left>Epithelium</TD><TD vAlign=top align=middle>?+</TD><TD vAlign=top align=middle>++</TD><TD vAlign=top align=middle>?+</TD><TD vAlign=top align=middle>++</TD></TR><TR><TD vAlign=top align=left>Olfactory area of nasal cavity</TD><TD vAlign=top align=left>Olfactory cells</TD><TD vAlign=top align=middle>?+</TD><TD vAlign=top align=middle>++</TD><TD vAlign=top align=middle>?+</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Middle ear</TD><TD vAlign=top align=left>Epithelium of tympanic cavity</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>++</TD><TD vAlign=top align=middle>++</TD></TR><TR><TD vAlign=top align=left>Lung</TD><TD vAlign=top align=left>Epithelium of bronchiolus, alveolar cells</TD><TD vAlign=top align=middle>+++</TD><TD vAlign=top align=middle>+++++</TD><TD vAlign=top align=middle>+++</TD><TD vAlign=top align=middle>++</TD></TR><TR><TD vAlign=top align=left>Olfactory bulb</TD><TD vAlign=top align=left>Neurons</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+++</TD></TR><TR><TD vAlign=top align=left>Cerebrum</TD><TD vAlign=top align=left>Neurons, glial cells, ependymal cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+++</TD></TR><TR><TD vAlign=top align=left>Brainstem</TD><TD vAlign=top align=left>Neurons, glial cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>++++</TD><TD vAlign=top align=middle>+++</TD></TR><TR><TD vAlign=top align=left>Cervical spinal cord</TD><TD vAlign=top align=left>Neurons, glial cells, ependymal cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>+++</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Truncus sympathicus ganglion</TD><TD vAlign=top align=left>Ganglion cells, satellite cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>++</TD><TD vAlign=top align=middle>+++</TD></TR><TR><TD vAlign=top align=left>Thoracic spinal cord</TD><TD vAlign=top align=left>Neurons, glial cells, ependymal cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>++</TD><TD vAlign=top align=middle>++++</TD></TR><TR><TD vAlign=top align=left>Lumbar spinal cord</TD><TD vAlign=top align=left>Neurons, glial cells, ependymal cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Liver</TD><TD vAlign=top align=left>Hepatocytes</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD></TR><TR><TD vAlign=top align=left>Adipose (fat) tissue</TD><TD vAlign=top align=left>Fat cells</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD><TD vAlign=top align=middle>?</TD><TD vAlign=top align=middle>+</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>

      Comment


      • #4
        Re: Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after...

        Click on image to view larger version.



        Fig. 1. Histological and immunohistochemical analyses of lung (a?d), thoracic spinal cord (e) and olfactory bulb (f) obtained from mice. (a) Lung; original Ck/Yama/7/04 strain-infected mouse at day 6 p.i. Mild bronchointerstitial pneumonia is present. HE stain. (b) Lung; original Ck/Yama/7/04 strain-infected mouse at day 6 p.i. A small amount of viral antigen is present in the epithelium of the bronchiolus and alveolar cells. Immunoperoxidase labelling, haematoxylin counterstain. (c) Lung; MBV-A strain-infected mouse at day 6 p.i. Severe necrotizing bronchiolitis and diffuse alveolar damage can be seen. HE stain. (d) Lung; MBV-A strain-infected mouse at day 6 p.i. Abundant viral antigen is present in the epithelium of the bronchiolus and alveolar cells. Immunoperoxidase labelling, haematoxylin counterstain. (e) Thoracic spinal cord; original Ck/Yama/7/04 strain-infected mouse at day 6 p.i. Viral antigen is present in the neurons, glial cells and central canal ependymal cells. Immunoperoxidase labelling, haematoxylin counterstain. (f) Olfactory bulb; MBV-A strain-infected mouse at day 3 p.i. Viral antigen is present in the neurons. Immunoperoxidase labelling, haematoxylin counterstain. Magnification, x20 (a?d); x10 (e); x40 (f).

        Comment


        • #5
          Re: Recent H5N1 avian Influenza A virus increases rapidly in virulence to mice after...

          Table 2. Growth of original Ck/Yama/7/04 and MBV-A strains in mice
          Virus titres in the organs shown were determined. Mean?SD is shown for the number of virus-positive mice that died or were sacrificed.
          <TABLE border=1><TBODY><TR><TD><TABLE cellSpacing=5 cellPadding=0><TBODY><TR><TD vAlign=bottom align=left rowSpan=2>Time post-infection (days)</TD><TD vAlign=bottom align=middle rowSpan=2>Virus</TD><TD vAlign=top align=middle colSpan=5>Virus titre [log<SUB>10</SUB>(EID<SUB>50</SUB>) g<SUP>?1</SUP>]
          <HR noShade SIZE=1></TD></TR><TR><TD vAlign=top align=middle>Brain</TD><TD vAlign=top align=middle>Lungs</TD><TD vAlign=top align=middle>Spleen</TD><TD vAlign=top align=middle>Liver</TD><TD vAlign=top align=middle>Kidneys</TD></TR><TR><TD colSpan=7><HR></TD></TR><TR><TD vAlign=top align=left>3</TD><TD vAlign=top align=middle>Original</TD><TD vAlign=top align=middle>0/3</TD><TD vAlign=top align=middle>3/3 (5.4?1.0)</TD><TD vAlign=top align=middle>3/3 (4.3?1.0)</TD><TD vAlign=top align=middle>0/3</TD><TD vAlign=top align=middle>0/3</TD></TR><TR><TD vAlign=top align=left></TD><TD vAlign=top align=middle>MBV-A</TD><TD vAlign=top align=middle>3/3 (4.4?0.1)</TD><TD vAlign=top align=middle>3/3 (8.2?0.6)</TD><TD vAlign=top align=middle>3/3 (4.8?0.5)</TD><TD vAlign=top align=middle>3/3 (3.7?1.2)</TD><TD vAlign=top align=middle>3/3 (4.7?0.3)</TD></TR><TR><TD vAlign=top align=left>6</TD><TD vAlign=top align=middle>Original</TD><TD vAlign=top align=middle>2/3 (4.0, 3.3)</TD><TD vAlign=top align=middle>3/3 (5.2?1.9)</TD><TD vAlign=top align=middle>1/3 (3.3)</TD><TD vAlign=top align=middle>0/3</TD><TD vAlign=top align=middle>0/3</TD></TR><TR><TD vAlign=top align=left></TD><TD vAlign=top align=middle>MBV-A</TD><TD vAlign=top align=middle>3/3 (5.0?0.9)</TD><TD vAlign=top align=middle>3/3 (6.4?1.3)</TD><TD vAlign=top align=middle>3/3 (2.7?0.3)</TD><TD vAlign=top align=middle>3/3 (2.4?0.4)</TD><TD vAlign=top align=middle>0/3</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>

          Comment

          Working...
          X